Volumetric Path Tracing

Justin Goodman
Dept. of Computer Science
University of Maryland
College Park, MD
jugoodma@umd.edu

Abstract—We implement volumetric rendering as an extension
to the nori educational ray tracing codebase. We present ren-
derings using both homogeneous and heterogeneous participating
media.

Index Terms—volume, volumetric, path tracing, participating
media

I. INTRODUCTION

Generating realistic images from a scene description is a
common and well-studied problem in computer science. The
general solution is to take a scene description, build a three-
dimensional scene in-memory, and model light transportation
(backwards) from the virtual camera eye into the scene. This is
called ray tracing — where we shoot a ray from the camera eye
into a virtual scene and compute the emitted light at the ray
hit-point. This approach yields picture-realistic images, since
it correctly approximates light transportation in the real world,
at the expense of computational efficiency. Oftentimes, scenes
are modeled using meshes, which may consist of millions of
triangles. The naive approach to compute a ray intersection
is to test whether a ray intersects with every triangle in the
scene. This is obviously computationally infeasible for a large
number of triangles. To solve this, we store the scene mesh
triangles in an acceleration structure. Examples include kd-
trees, octrees, and bounding-volume hierarchies. Using this,
we can logarithmically reduce the amount of triangles we
have to intersect, thus making ray tracing computationally
feasible. Finally, each individual section of rendered image is
independent of all other sections, so we can easily parallelize
the rendering computation.

This works for simple surface interactions. However, in
reality, light often hits multiple surfaces before it reaches your
eye. Each bounce alters the resulting light you see. To model
this, we simply allow the light to bounce off a hit surface
while ray tracing, and attenuate the final computed color per
bounce. This process is called path tracing.

This generally gives us good results, and allows us to
model scenes involving glass (caustics, specular highlights,
etc) and mirrors. However, the actual path that light travels
to hit your eye can alter the color as well. This is called
a volume interaction, and we model this using participating
media. Essentially, we consider tiny particles that light might
travel through between surfaces all as potential hit points for
the ray. We model this using simple absorption and scattering
coefficients o, and o. Particles also have densities, which

may change throughout a scene, so we account for this
by discretizing a scene indicating which areas have which
densities of particles. This entire process is called volumetric
path tracing, and is non-trivial to implement. We implement
it in the educational ray tracer codebase nori, and provide
resulting images rendered with a suite of participating media.

II. RELATED WORK

James Kajiya created the rendering equation in 1986, which
models light transportation and generalized many rendering
algorithms at the time [!]. To-date, this equation is the
main goal rendering algorithms aim to solve or approximate.
Eric Lafortune applied monte carlo methods to solving the
rendering equation in their 1995 thesis [2]. Then, a year
later, Lafortune introduced volumetric path tracing to handle
participating media [3]. Finally, nori is a modern ray tracer
written in c++! by Wenzel Jakob, who also co-wrote, with
Matt Pharr, the Physically Based Rendering textbook [4] and
companion source code pbrt-v32. We base our volumetric
path integrator, and participating media interfaces, on those
implemented in pbrt.

III. APPROACH

We extend the nori codebase with a volumetric path-
tracing integrator. To do this, we implemented the following
parts:

e volpath.cpp — the integrator itself

e medium.h, medium.cpp - interfaces for handling
medium interactions

¢ homogeneous.cpp, grid.cpp — homogeneous and
heterogeneous medium handlers

e phase.h, henyeygreenstein.cpp — interfaces for
handling phase functions for medium interactions

e scene.cpp — for a special ray-intersect algorithm that
accumulates scene transmittance in a medium

e mesh.cpp — to allow for meshes to have
nal/external media 3

inter-

Thttps://github.com/wjakob/nori

Zhttps://github.com/mmp/pbrt-v3

3Unfortunately, I could not implement participating media inside of scene
objects. I tried, but could not work out a bug that caused it to fail after 3 or
4 ray-medium bounces. I believe the bug deals with how I was switching the
medium the ray is currently in while computing transmittance. This is not a
huge concern, though, since one could quite easily use a grid medium with a
homogeneous section located inside of the requested mesh object.

https://github.com/wjakob/nori
https://github.com/mmp/pbrt-v3

e parser.cpp — to account for inputting grid densities
as an array

The simplest approach to volumetric path tracing is to
assume the entire scene is inside a homogeneous fog. Fog is
just a collection of particles that can scatter and absorb light.
With standard ray tracing, where we only care about surface
interactions, we shoot a ray into a scene and yield a hit-point
on a surface. When introducing fog, we perform the same
computation. However, there is some chance that our ray could
hit a fog particle. Thus, we compute this chance by sampling
the medium (the fog) with respect to the transmittance. For a
homogeneous medium, this is computed as

0 =04+ 0s>0

where o, is the color absorbance coefficient and o is the
color scattering coefficient. We require the transmittance to
be positive since we require non-negative color, and because
we scale our sample probability by dividing the transmittance.
To determine whether a ray interacts with the scene medium,
we compute a distance d = 7% where we random
uniformly select € € [0,1] and we sélect, random uniformly,
one of the three channel values ¢ from o;. Then, we com-
pute the time along the ray at which this selected medium
interaction would occur, computed as ¢ = ﬁ where ||r||
is the ray’s direction length. If this time is less than the ray’s
maximum time, then we interpret this as a medium interaction.
Otherwise, we interpret it as a surface interaction. We handle
both interactions in a similar way — compute the contributed
light using multiple importance sampling, then bounce the
ray (using the phase function if medium interaction, or using
the BSDF if surface interaction). Surface interactions are
exactly the same as the path_mis integrator implemented
in assignment 4. For medium interactions, the only difference
is that shadow rays also have to include medium transmittance.

For the volumetric path integrator, our medium interfaces
need to provide a sampling function to decide whether the
current ray interacts with the medium, and they need to provide
a transmittance function to compute how much light radiance
is transmitted between two given points in the medium. For
homogeneous media, by definition transmittance is constant
everywhere, and is given by Beer’s law

T, = e otd

where d is the distance between the two points. In our imple-
mentation, the two points are assumed to be the minimum and
maximum points along the a given ray.

Our phase function interface requires a function to randomly
sample a direction, as well as a function to return the proba-
bility that a given direction was sampled. We use the Henyey-
Greenstein phase function model, which takes an asymmetry
parameter g € (—1,1) to control backward versus forward
scattering based on the probability equation

1 1—g¢?

4 (1+ g2 + 2g(cos 6))3/2

given cos f between two direction vectors. Given these com-
ponents, fog is quite easy to model (see fig. 1a). Similarly,
we can also see the difference between backward and forward
scattering (fig. 1b and 1c).

Though, this is only covers media where scattering is
constant throughout the scene. Heterogeneous media have non-
uniform densities in the scene. We account for this in the grid
medium grid.cpp by storing densities as a grid. This is
given to the ray tracer as an array of floating point values,
as well as n;,n,,n, parameters that dictate how the array is
transformed into a three-dimensional matrix. We also require
grid density media give a change-of-coordinate transformation
to indicate how to change a world ray into a local grid ray. This
is done by giving a grid density medium two local-coordinate
points pg and p;, as well as a transformation matrix W to go
from local coordinates to world coordinates, and computing
the inverse transformation. Using the homogeneous coordinate
system, we get the matrix D that takes world coordinates to
medium-local coordinates, given by

M = T(po) x S(p1 — po)
D= (WxM)!

where T is the translation matrix

1 0 0 p=z

{01 0 py

Tw=19 ¢ 1 Dz

00 0 1

and S is the scaling matrix

px 0 0 O
10 py 0 O
S=10 "0 pz 0
0 0 0 1

as usual. Then, we use D to translate rays to the grid
medium local coordinate system for computing transmittance
and sampling directions. The basic idea is we break the ray
that is shot through the medium into individual homogeneous
parts, and accumulate the transmittance according to Beer’s
law. This can be costly though, since we might have lots of
three dimensional homogeneous sections in the medium. To
get around this, one approach is to use ray marching, where
we march through the heterogeneous medium along the ray
in equidistant parts. This approach implicitly introduces bias
though. Instead, we use delta tracking. To do this, we assume
the heterogeneous medium is filled with “virtual” particles, and
we compute transmittance (scaled by the maximum density)
until we reach a uniform density by Russian roulette. But,
we can think of the basic idea as advanced ray marching. An
example of rendered smoke is shown in figure 2.

IV. DATA

Using heterogeneous media, we can model things like
clouds, smoke, and water. Smoke and cloud datasets are hard
to come by.* To account for this, we wrote a small Python

4We couldn’t find any when we looked.

(a) Cornell Box rendered using volumetric
path max-depth 5, 512 samples per pixel,
oa = [0.001764,0.0032095,0.0019617],
os = [0.31845,0.31324,0.30147], and
g=0.

(b) Cornell Box rendered with the same
settings, but g = —0.9. Backward scat-
tering leads to light more likely scatting
towards a light source. Thus, we see a
darker image, since the camera eye is not
towards the light source.

(c) Cornell Box rendered with the same
settings, but g = 0.9. Forward scattering
leads to light more likely scattering away
from light sources. Thus, we see a brighter
image, since the camera eye is away from
the main light source with respect to the
scene medium.

Fig. 1: Cornell Box rendered using varying values of ¢ in the Henyey-Greenstein phase function.

Fig. 2: Smoke using grid density values from the openly-
available pbrt-v3 scenes. This specific smoke cloud uses
the cloud scene https://pbrt.org/scenes-v3. This is a different
angle than the pbrt scene, but we can see the smoke blocks
light and casts a shadow on the floor.

script to output grid densities into a testing scene. The script
pseudocode to generate a ball is presented in figure 3. Other
than this, and cloud data included with pbrt, we use no
external data.

V. RESULTS

An example of table with fog is presented in figure 4. An
example ball of fog is presented in figure 5, and a gaussian-
randomized smoke cloud is presented in figure 6. Finally, we
model the ajax bust with fire (similar to the yellow smoke in
figure 6) in figure 7 and underwater in figure 8.

VI. CONCLUSION

Overall, this was a fun, yet challenging, project. We are
grateful for the incredible pbr book and the provided pbrt

nx,ny,nz = 11,11,11
density = []
for i in range (nx*ny*nz) :
density.append(0)
for z in range(l,nz-1):
for y in range(l,ny-1):
for x in range(l,nx-1):

dist =
(x — (nx=1)/2)**2 +
(y = (ny-1)/2)»*2 +
(z — (nz=1)/2)*«*2

dist = dist*%0.5
density[(z*ny + y)*nx + x]
= 1/(2%*(dist+2))

Fig. 3: Python script to generate a smoke sphere. In the
actual implementation, we restrict the sphere radius to % and
enforce the edges to be 0. This reduces harsh edges around
the medium boundary.

source code. We were successful in implementation, and
created some interesting renderings.

REFERENCES

[1] J. T. Kajiya, “The rendering equation,” in Proceedings of the
13th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH °86. New York, NY, USA: Association
for Computing Machinery, 1986, p. 143-150. [Online]. Available:
https://doi.org/10.1145/15922.15902

[2] E. P. Lafortune, “Mathematical models and monte carlo algorithms for
physically based rendering,” Ph.D. dissertation, Department of Computer
Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium,
February 1995.

[3] E. P. Lafortune and Y. D. Willems, “Rendering participating media with
bidirectional path tracing,” in Rendering Techniques '96, X. Pueyo and
P. Schroder, Eds. Vienna: Springer Vienna, 1996, pp. 91-100.

[4] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering:
From Theory to Implementation, 3rd ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2016.

https://pbrt.org/scenes-v3
https://doi.org/10.1145/15922.15902

Fig. 4: Table scene (Olesya Jakob) with fog. This example
uses a homogeneous medium. o, = [0.002,0.002,0.0001],
os = [0.075,0.025,0.01], g = 0.9.

Fig. 7: Ajax bust modeled with a ball of exploding fire. Ajax
uses a microfacet BSDF. Notice the orange specular highlights
made by the fire.

Fig. 5: Ball of smoke modeled using heterogeneous medium.
o = [90,90,90], o, = [10, 10, 10], and g = 0.

Fig. 8: Ajax bust modeled to appear underwater. Ajax uses a
dielectric BSDF with interior index of refraction n = 1.33
and exterior index of refraction n = 1.5. We use o, =
[0.50.250.01], o5 = [0.010.260.5], and g = —0.1 with 4096
samples per pixel. Note that a simple diffuse BSDF for Ajax
Fig. 6: Area of yellow smoke modeled using heterogeneous With a blue appearance would achieve a similar, but less
medium. o, = [2.4,4.5,7.2], 05 = [5.6,3.5,0.8], and g = interesting, result.

—0.7.

	Introduction
	Related Work
	Approach
	Data
	Results
	Conclusion
	References

