
Multi-Agent Mapping with Imperfect Communication on Commodity
Hardware

Clifford Bakalian and Justin Goodman

I. INTRODUCTION
The field of robotics has grown exponentially in the past

few decades. As such, there exist many problem domains,
such as mapping and navigation, in the robotics commu-
nity. We notice, however, that oftentimes researchers solve
robotics problems using simulations or expensive custom-
built robots. In this paper, we challenge these practices
by actually building low-cost robots and evaluating their
performance under a real-life mapping task.

Specifically, our research goal is to evaluate the viability of
state-of-the-art distributed mapping algorithms with hobby-
tier hardware in real life. Oftentimes, as we are doing here,
pushing the bounds on current literature will provide insight
towards future work. As an added layer of complexity, we
introduce mapping under imperfect communication to our
experimental set-up. Imperfect communication results from
real-world, and not necessarily simulated-world, effects such
as malicious actors, bad sensors, and physical obstacles.
While we ran out of time to achieve our goal, mapping under
imperfect communication contributes saliently to future work
and we plan to apply it on our experimental set up in the
future.

II. RELATED WORK
In 2010, the Australian and US Departments of Defence

put on MAGIC – the Multi Autonomous Ground-robotic
International Challenge [5]. Among other challenges, teams
had to develop distributed robots to autonomously map out
a 500m × 500m area. Approaches included LiDAR sen-
sors, omnidirectional vision, and laser scanners for mapping
and GPS for positioning. Most teams implemented SLAM
algorithms for indoor mapping. For this paper, we do not
assume the same hardware access as these teams. Modules
like LiDAR and laser scanners are significantly more expen-
sive than analogous commodity hardware. Additionally, GPS
requires an unobstructed view of the sky and has unfavorable
error for small agents. Thus for the context of this paper,
this would not allow for commodity hardware, nor accurate
indoor mapping.

Work has been done related to bounded communication
which can assist with imperfect wireless communication.
Feng Wu et. al. solve multi-agent DEC-POMDP planning
under restricted communication using linear programming
[9]. We do not use this approach however we do believe this
would be something interesting to include for future works.

Mapping is a rich research topic in robotics. Specific to
distributed mapping, [2] use pose graph optimization. We
want to go a simpler route since we have limited hardware

and so out approach will use occpancy grid mapping using
logs odds.

Joseph Rothermich et. al. use robotic swarms for local-
ization and mapping [8]. In their study, their robots lack
range sensors and instead rely on bumping for mapping.
Localization is done using distance from global landmarks
emitting global positions. We want to avoid reliance on
global beacons and so we take a different approach to
localization by using sound. We plan on using a speaker
and 2 microphones to determine where each agent is relative
to the others.[6], [4]

Distributed localization and mapping is generally an active
research area. Especially for large environments, single-node
CPU and limited RAM resources become too sparse. Robert
G. Reid wrote his 2016 doctorate thesis on the topic where
he utilized GPUs to re-mesh each agent’s local occupancy
grid [7]. Since we are focusing on a smaller scale we do not
need large computational power to merge sub-maps, since we
are starting out knowing where each agent begins relative to
the others, (making the corresponding sub-maps relative as
well). Additionally our approach uses intermittent merging
rather than a single merge at the end.

III. PROBLEM FORMULATION

Suppose that a team of robots n ≥ 2 and a central server
are deployed to map an unknown environment. The robots
may communicate to each other via audio signal and to the
server via Wi-Fi. Both signal streams may contain noise.
Furthermore, both signal streams may close, and re-open, at
any point with nonzero probability. Finally, assume the server
knows the relative positioning of each robot to themselves,
and the robots will send pose updates after movement com-
mands. For this paper, we evaluate the feasibility of solving
this problem given low-budget commodity hardware.

IV. APPROACH

When planning, our distributed mapping algorithm must
account for multiple agents and communication drop-outs.
We leave the latter to future work, as we ran out of time
working on the former.

Our first task is to localize each agent. Without GPS
or a beacon-friendly environment, we appealed to acoustic
localization. We discuss this project separately for another
class. For the scope of this paper, assume the server has
multilaterated each agent to obtain a relative positioning of
all agents with respect to a leader agent.

The server can begin mapping once it knows each agent’s
relative coordinates. We implement this using occupancy grid

mapping. Server-side, each agent acts as an API – a fancy
sensor, if you will – to the environment. The server can
ask an agent for distance readings, and it can tell an agent
to move with two degrees of freedom. These both enable
mapping and motion respectively.

Our second task is to account for communication drop-
outs. Given more time, our approach would have been as
follows. The server generates a trajectory for each agent.
The server sends this trajectory, and listens for when the
agent is finished. If communications drop out at this step, we
retry whenever we can. Next, the agent is always listening
for new trajectory updates unless it is currently performing
one step in a trajectory. The agent keeps a local log of
events, just as if the server were pinging it every time it
finishes a motion command. Upon receipt of a new trajectory,
the agent will send back its local log of events to the
server, and wait for a corrected trajectory (the server can
only guess at where the agent is at this point). The server
receives the log, plays it forward to reconstruct and merge
the local occupancy grid map, and calculates and sends a
new trajectory for the agent. If communications drop out at
any point, both parties retry. We did not have time to evaluate
what should happen if an agent finishes its local trajectory
before receiving an updated one. One approach may be to
roam semi-randomly, while another may be to perform some
local path planning. Either way, the agent is restricted to the
computational capabilities of its host micro-controller. For
multiple agents, occupancy grid mapping abstracts neatly –
we treat overlapping different-agent sensor readings as two
successive readings from one sensor.

With all of this in mind, we built a real team of n = 3
25cm × 15cm mobile robots from commodity hardware. Al-
together, each agent costs $58. We believe this is well within
reason for an online, localization-capable, and mapping-
capable, low-cost build. A parts list is presented in table
I, and a wiring schematic can be found in our GitHub
Repository [1]. We chose ultrasonic sensors due to their
low cost and high availability. Our motion-processing units
contain gyroscopes and accelerometers. We use the ultrasonic
sensor for range finding and travel distance judgment, and
the gyroscope for accurate rotation measurements.

Note that we use two micro-controllers (micro control
units – MCUs) for this project. We require this because
we need wireless communications (Wi-Fi), and a handful
of analog inputs for audio and motion capturing. The boards
communicate via serial communication. Board synchroniza-
tion is vital due to our placement of sensors – one board
contains access to the ultrasonic sensor, while the other
contains access to the motion-processing unit and motors.

We plan on placing these robots in an enclosed area with
multiple obstacles made of wood. Imagine a maze, roughly
scaled to the robot size – 5-10m × 5-10m area. The obstacles
can be moved around randomly before the start of each run.
We will measure success by comparing the accuracy of the
global map generated by the agents to the actual known
world environment.

Once the robots are placed and “localized”, we begin our

occupancy grid mapping routine. Note that any path planning
algorithm would suffice here to decide where to send the
robots, so long as it accounts for noisy sensor readings. One
might frame our mapping problem as a Markov decision pro-
cess (MDP) and use any well-known solver (eg: Monte-Carlo
Tree Search) for deciding on robot trajectories. Future work
is required for exact implementation details with respect to
imperfect mapping.

We present our entire algorithm in 1 and 2. Our actually-
implemented mapping policy is as follows. Randomly pick
K random points within the occupancy grid map which
are within some restricted radius of the robot i which
needs planning. Choose the point Kp with the smallest
magnitude occupancy grid value (which corresponds to the
“most unknown” point). Then, perform breadth-first search
from Kp to i and yield a trajectory. Send commands to i
such that it follows the trajectory. Once Kp is reached, repeat.
Note that, due to high-noise commodity hardware, our server
can only estimate where each robot actually is.

Algorithm 1: Multi-Agent Mapping – Server

wait for robots to register;
localize();
// begin mapping;
while within computation budget do

ci ← retrieveRobotCommunication();
if ci is forward move result then

u← requestUltrasonic(i);
updateGrid(i, u);

end
planTrajectory(i);

end

Algorithm 2: Multi-Agent Mapping – Robot

setupBoard();
syncBoard();
while alive do

e← receiveSeverTransmission();
if e is move request then

doMove(e);
end
if e is ultrasonic request then

takeMeasurement(e);
end
transmitResult();

end

V. RESULTS

Our prototype robots can be seen in figure 1. Our mapping
and exploration code can be seen in our GitHub repository
[1]. Most of our time in this project was spent wiring our
robots and writing control code.

Fig. 1. All three robots.

Our results leave much to be desired, yet are hopeful
towards future work. Due to time constraints, we could not
test our robots inside a large maze. Figure 2 displays one
of our tests. Our robots can indeed sense ranges, however

Fig. 2. Example occupancy grid map generated by two agents. The robots
were placed in a 230cm × by 190cm arena. Barring walls, there were no
obstacles in the environment. Each grid cell represents 10 centimeters. We
used an odds value of 0.85. As in standard occupancy grid mapping, darker
colors mean the cell is more likely to be occupied. We did not include our
third robot in this test due to technical failure. The demo that created this
map is available in our GitHub repository [1].

the resulting map is highly inaccurate. Most of this error is
caused by our inaccurate movement sensors and our lack of
environmental sensors.

VI. LIMITATIONS

Most of our error is caused by inaccurate motion sensors,
and low-quality motors. Furthermore, our wheels lacked trac-
tion in our tested environment. If we increased our budget,

we would use higher quality motors, a motor controller
module, or even use a tread approach as seen in [3]. This
would greatly reduce the error obtained during movement.
Additionally, for more accurate occupancy values, we would
purchase more (inexpensive) ultrasonic sensors. Alternatively
we could double our budget and consider different types
of environment sensors like LiDAR. This is less favorable,
though, as it takes away from the main point of the paper.

For future work, we may make our mapping algorithm
more efficient and knowledgeable. A greedy approach to
mapping may be more time efficient, yet be unfavorable for
inaccurate sensors and robot battery life. A learning approach
may provide better path planning. We may also take better
advantage of our agents being distributed. One consideration
we had not implemented, yet is crucial for optimal planning,
is to ensure our robots implement better robot-robot collision
avoidance.

VII. CONCLUSION
While we may not have achieved our research goal, we

believe that we have still shown significant progress towards
our end goal of creating a low cost robot which can map
an enclosure. We highly encourage the reader to view our
server and control code available in our GitHub repository
[1].

VIII. CONTRIBUTIONS
We list our contributions, and associated author, in table

II.

Author Contribution

Cliff robots
algorithm design

Justin server
algorithm design

TABLE II
AUTHOR CONTRIBUTIONS.

REFERENCES

[1] https://github.com/jugoodma/818bw-project.
[2] Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Hen-

rik I Christensen, and Frank Dellaert. Distributed mapping with
privacy and communication constraints: Lightweight algorithms and
object-based models. The International Journal of Robotics Research,
36(12):1286–1311, 2017.

[3] David Gonzalez-Arjona, Alberto Sanchez, Fernando López-Colino,
Angel De Castro, and Javier Garrido. Simplified occupancy grid indoor
mapping optimized for low-cost robots. ISPRS International Journal
of Geo-Information, 2(4):959–977, 2013.

[4] J. Hornstein, M. Lopes, J. Santos-Victor, and F. Lacerda. Sound
localization for humanoid robots - building audio-motor maps based
on the hrtf. In 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1170–1176, 2006.

[5] Ani Hsieh and Simon Lacroix. Editorial: For the jfr special issue
on “multiple collaborative field robots”. Journal of Field Robotics,
29(5):687–688, 2012.

[6] P. Karimian, R. Vaughan, and S. Brown. Sounds good: Simulation and
evaluation of audio communication for multi-robot exploration. In 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2711–2716, 2006.

[7] Robert George Reid. Large-scale simultaneous localization and map-
ping for teams of mobile robots, 2016.

[8] Joseph A. Rothermich, M. İhsan Ecemiş, and Paolo Gaudiano. Dis-
tributed localization and mapping with a robotic swarm. In Erol Şahin
and William M. Spears, editors, Swarm Robotics, pages 58–69, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[9] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen. Online planning
for multi-agent systems with bounded communication. Artificial Intel-
ligence, 175(2):487 – 511, 2011.

Part

1 ESP8266 NodeMCU
1 Arduino Nano
1 HC-SR04 Ultrasonic Sensor
2 KY-038 Microphone
1 PAM8403 5V Amplifier
1 4Ω 3W Speaker
1 GY-521 MPU-6050 Module
1 L9110S H-Bridge
4 3-6V Motor
1 DIY Robot Chasis
1 Toggle Switch
1 9V 600mAh Li-ion Rechargeable battery

TABLE I
PARTS LIST. NOTE THAT OUR ROBOT CHASSIS INCLUDED THE FOUR DC
MOTORS, AS WELL AS MOUNTING HARDWARE. NOTE THAT OUR WI-FI

BOARD IS AN ENTIRE MICRO-CONTROLLER MADE BY HILETGO

(ESP8266 CP2102 ESP-12E). NOTE THAT WE USE THE LAFVIN
NANO WITH ATMEL ATMEGA328P-AU MICRO-CONTROLLER UNIT AND

CH340G USB CHIP. WE OMIT OUR SPECIFIC WIRE AND BREADBOARD

COUNTS, BUT OUR MOST RECENT WIRING SCHEMATIC IS AVAILABLE IN

OUR GITHUB REPOSITORY [1].

