loT Sonic Localization on Commodity Hardware

Clifford Bakalian, Justin Goodman

University of Maryland, College Park

ABSTRACT

One key aspect of multi-agent tasks is sharing and maintain-
ing agent location data. Typical approaches to localization
fail for constrained domains. GPS fails for indoor problem
domains, and sophisticated sensors fail for limited-budget
domains. In this paper, we explore the viability of using
sound to localize agents relative to each other. We constrain
ourselves to commodity hardware with a max budget of $60.
We show that, theoretically, any agents (n > 2) can local-
ize themselves relative to each other. Our proof-of-concept
robots provide valuable insight towards solving this prob-
lem.

1. INTRODUCTION

Localization is the problem of figuring out where an
agent is located relative to some reference frame. Agent
localization is the first step to solving most distributed-
agent problems. For example, distributed mapping of
an unknown environment is an important robotics prob-
lem requiring agent localization. Many approaches to
localization exist, each with pros and cons. GPS al-
lows localization of agents to latitude/longitude Earth
coordinates, yet must be performed outside. Indoor fin-
gerprinting techniques allow localization to an estab-
lished beacon grid, yet requires existing infrastructure
and consistent maintenance. SLAM techniques remove
the fingerprinting requirement, yet typically place other
environmental restrictions. Finally, most localization
techniques assume the agent has access to accurate mea-
surements from many sensors. We explore solving local-
ization under the following constraints:

1. minor environment assumptions
2. limited hardware capacity

In this paper, we contribute a proof-of-concept robot-
server architecture to facilitate the localization first-step
for a general robot mapping problem. Our localization
procedure, SLOMO (Sonic LOcalization using MOtion),
uses audio signals passed between agents to derive dis-
tance estimates, which are used for multilateration to
derive relative positioning. Our robots, which we call
SLOBs (Sonic LOcalization Bot) in this paper, are built
using cheap commodity hardware. Our SLOBs feature
a two-board communication architecture that includes

wireless internet connectivity, two-axis motion function-
ality, audio source functionality, and sensor array acces-
sibility including two microphones, an accelerometer, a
gyroscope, and an ultrasonic sensor. Each SLOB costs
about $58 to build — we list our parts in table 1 in section
3. Our code is also available open-source on GitHub [1].

The rest of the paper is organized as follows. Section
2 details the theoretical backing behind sonic localiza-
tion. Section 3 outlines our implementation and repro-
ducibility information. Section 4 discusses our proof-of-
concept results. Section 5 concludes the paper with a
discussion of limitations and future work.

2. THEORY

In this section, we evaluate the theoretical viability of
such a sonic system.

2.1 Distance Estimation

To some degree of error, the speed of sound in air is
constant at ¢ = 343 meters per second. We can use this
to estimate distance between a source and sink node.
To do this, we must ensure our speaker and listener are
talking and recording at the exact same time. Given
this, then distance can be measured easily.

A B
source d sink

Let T be the number of seconds at which the sink de-
tects the source’s signal. Then, in meters,

d=T- ¢

It is not apparently obvious how to find T', however. In
noisy environments, the source’s signal may appear un-
detectable at the sink by human ear. Yet, it is possible
to detect the signal using cross-correlation, given the
source signal. Assume that the sink records for longer
than the source’s signal. Let Sg.. denote the source’s
sent signal, and let Sy, denote the recorded sink signal.
Assume the sample rates of both signals are the same
— if they are not, then interpolate Sg.. until the sample
rate is the same. Then the cross-correlation is given
by element-wise multiplying the Fourier transform of
the received signal with the complex conjugate of the

Fourier transform (reversing) of the sent signal, and tak-
ing the inverse Fourier transform of the result. The
maximum-likelihood index at which the source signal
appears in the received signal is then the index that pro-
duces the maximum value in the aforementioned convo-
lution.

R=F" (F(Sree) © F(Sc))

i* = argmax R;
1
In practice, this requires zero-padding and offset correc-
tions. We omit these details for brevity. Then ¢* is the
most likely sample index at which Sy appears in Spec.
Let N be the sink’s sample rate in samples per second
(hertz). Then the time associated with index ¢* is given
by
1
-k
T=3"- N
which means the distance d, in meters, between the
source and sink is

Note that given the sampling rate, we are able to calcu-
late the distance traveled per sample, which gives us a
measure of distance detection fidelity. For the distance
traveled per sample, we calculate
(i+1)-¢c i-c) . C c
Ad=—F———=(i+1—-19)— = —
N N ()N N
This means fidelity and sample rate are inversely related
— as our sample rate increases, our change in distance
between samples decreases (meaning, our fidelity gets
better, more fine-grained).

Given a required fidelity, we can calculate the minimum
required audio sampling rate:

¢
N= Ad
For meter-level GPS accuracy, our system must support
a minimum sample rate of N = 343 samples per second.
As our scale reduces, the sampling rate increases. An
ideal target is centimeter-level accuracy, which requires
a minimum sample rate of N = % = 34.3kHz. Con-
sidering modern microphones can record at 44.1kHz,

minimum, 34.3kHz seems like a plausible target.

2.2 Multilateration

For a general k-dimensional Euclidean space, we need
at least k£ + 1 known-location base stations, and dis-
tances to said stations, to (k 4 1)-laterate an unknown
source. For locating a point in 2D space, one known-
location sink is not enough. In fact, we need at least
three base stations with known locations to pinpoint
the precise unknown location. Figure 1 showcases this

idea. The three microphones mi, ms, ms each hear a
corresponding distance dy, ds, d3 from the source. If the
microphone locations are known, and the distance cal-
culations are without error, then we can calculate the
source location (figure la). Let (z;,y;) denote the po-
sition of m;. Let (x,y) be the unknown position of src.
Then we can solve the resulting system for x and y:

di = (z—21)* + (y —1)?
dy = (z —22)* + (y — 12)°
d3 = (z — 3)° + (y — y3)*

Notice that this system may have no real solution.
Such a situation arises when the calculated distances
are within some amount of error such that not all circles
are overlapping. Given some distance error, we might
obtain resulting distances with circle radii as in figure
1b.

In our domain, we incur distance error if the source and
sinks are not properly synchronized. For example, if we
have a sample rate of N = 1000 samples per second,
then a synchronization offset of 10 milliseconds corre-
sponds to

4
Ad = (0.01 - 1000) - % = 3.43m

Notice that this does not depend on the sampling rate.
The distance error solely depends on the synchroniza-
tion. To achieve the target centimeter-level accuracy,
we require a minimum synchronization offset of % .
1000 = 0.002915 milliseconds. This may be infeasible
for a distributed system connected via the internet; it
seems modern methods can only achieve 10 millisecond
accuracy [2]. This also massively dwarfs the sampling
rate requirement, which implies time synchronization
will be our most significant source of error. As we dis-
cuss later, this is indeed the case.

2.3 Localization

By combining the previous ideas, we can realize require-
ments for a distributed mobile localization system:

1. more than two sinks with known locations
2. high enough sampling rate
3. low enough synchronization offset

Let us assume theoretically we have a feasible sampling
rate and synchronization. Then, we need some way to
satisfy known-location sinks. We present two viable op-
tions to solve this.

2.3.1 With Motion

Our first localization technique, SLOMO (Sonic LO-
calization using MOtion), is as follows. Consider two
agents, each equipped with two attached microphones.

A

(a) With zero error, trilateration is successful.

(b) If distance estimates incur error, trilateration may fail to
identify three intersecting points.

Figure 1: Multilateration in 2D space (trilateration) succeeding (1a) and failing (1b).

Further assume one agent ag is mobile and can accu-
rately move forward d meters and return —d meters.
Then we can calculate the location of the other agent
a1 with the following procedure:

1. a; sends audio source signal, and ag listens for
signal at both microphone sinks

2. ag moves forward d meters
3. a; transmits audio signal to ay again
4. ag moves backwards —d meters

We then calculate the distances from each microphone
to the source as before. We induce ay’s starting position
to be the origin (0,0) of some Cartesian global plane.
Given the microphone offsets to the agent’s center, and
the travel distance offset d, we now have four known-
location base stations (the microphone positions). Then
we perform multilateration to obtain the position of aq
relative to ag. Figure 2 shows this idea.

X X
r\
. ~ LN
micL —<—micR~,
ag ~ _ N
N N
. N
N N
~ N
N N
RN
<
d AR
~N
_sre
a1
//’ K//
x X
micl, micR
ao

Figure 2: SLOMO between a mobile leader listener
and a stationary secondary speaker. The leader micro-
phones are spaced out for clarity, but would be physi-
cally located on the agent in a similar configuration.

This procedure is easily abstracted to n > 2 agents:

1. designate one agent ag as the leader

2. for each agent a; that is not the leader, localize a;
to ag according to the previous procedure

We use this approach for our proof-of-concept.

2.3.2 With Deduction

While we did not look into it for this paper, we hypothe-
size another viable localization method. We denote this
approach as SLODE (SOnic LOcalization using DEduc-
tion). For three agents ag, a1, as, each with two micro-
phones and a speaker, do the following;:

1. designate ag as the leader (origin)

2. calculate source to left-right microphone distances
between each pair

3. deductively resolve the correct source point by ex-
ploiting the distances and induced left-right source
directions from each microphone pair

Calculating distance from estimated motion vectors can
yield error in SLOMO. As such, SLODE may be better
due to the lack of motion assumption. We leave the
theoretical, and empirical, analysis of SLODE to future
work.

3. IMPLEMENTATION

We realize our SLOBs using commodity hardware. Our
hardware choices are presented in table 1. Our robots
cost about $58, which we believe is well within reason
for such a project. Step-by-step reproducibility infor-
mation is available in our GitHub repository [1].

Our SLOBs contain two micro-controllers (Arduino
Nano and ESP8266), which communicate using serial
transmit and receive communication lines. We use the
Arduino Serial software interface to facilitate this. Due
to wiring and sensor constraints, and analog micro-
phone requirements, we placed both microphones on

Part

ESP8266 NodeMCU
Arduino Nano

HC-SR04 Ultrasonic Sensor
KY-038 Microphone
PAMS8403 5V Amplifier

4Q) 3W Speaker

GY-521 MPU-6050 Module
L9110S H-Bridge

3-6V Motor

DIY Robot Chasis

Toggle Switch

9V 600mAh Li-ion Rechargeable battery

el el el el VS

Table 1: Parts list. Note that our robot chassis in-
cluded the four DC motors, as well as mounting hard-
ware. Note that our Wi-Fi board is an entire micro-
controller made by HiLetgo (ESP8266 CP2102 ESP-
12E). Note that we use the LAFVIN Nano with Atmel
Atmega328P-AU micro-controller unit and CH340G
USB chip. We omit our specific wire and breadboard
counts, but our most recent wiring schematic is avail-
able in our GitHub repository [1].

our Nano board. This unfortunately limits our sam-
pling rate to the maximum baud possible through the
serial communication channel. The Serial library sets
the maximum baud at 115200 bits per second. Our
microphones produce analog signal amplitudes between
0 and 1023, requiring 10 bits per sample. Under align-
ment, this is 2 bytes (16 bits) per sample. Each SLOB
has two microphones, so we must collect and transmit
at least 20 bits per sample. Under alignment, this is
4 bytes (32 bits) per sample. Given the maximum
baud, we can theoretically transmit 115200 - 3—12 = 3600
left-right samples per second. We are also limited by
our micro-controller clock speed. The Arduino Nano
performs our audio sampling, and clocks at 16MHz.
Assume, liberally, that it takes 1000 clock cycles to
record one sample. Then theoretically a Nano board
can record audio at 16000000 - Wloo = 16000 samples
per second, or a 16kHz sampling rate. It follows that
our serial communication severely restricts our audio
sampling performance. At the maximum transfer rate,
though, a 3.6kHz left-right sampling rate achieves a
single-microphone sampling rate of 1.8kHz yielding a
theoretical 19cm distance fidelity.

Our software implementation is available on GitHub
[1]. We implemented SLOMO using a server written
in Golang. An AMD Ryzen 7 3700X CPU computer
hosts the server and LAN. Each SLOB contains a Wi-Fi
micro-controller which provides client and server func-
tionality. This allows our SLOBs to maintain a bidirec-
tional communication channel with our server. In this

way, our SLOBs act as APIs for which the server in-
teracts. The server sends commands — SPEAK, LISTEN,
MOVE, and SENSOR — via HTTP POST requests to an
individual SLOB, and our SLOBs send result informa-
tion — timing information, audio samples, move results,
and sensor readings — via HTTP POST requests back
to the server. We list our full architecture in figure 3.

Each SLOB is about 25cm x 15cm. The SLOB’s
speaker is placed, facing upright, as close to the center
as possible. The microphones are placed upright in the
center close to the outermost edges of the car. The
microphones are about 10 centimeters apart.

At the start, the server waits for all n robots to reg-
ister. Registration is performed by a SLOB making a
POST request to the server after the SLOB turns on
and finishes its set-up procedure. On registration, the
SLOB tells the server its IP address and its millisecond
clock time. The server assigns a unique then assigns a
unique ID (counting up from zero) to the SLOB, then
saves this clock time to use as an offset for localization
timing. The server replies to the registrant with the ID.
The SLOB saves this ID, and sends it with all messages
sent to the server henceforth.

Localization starts after all SLOBs are registered. The
SLOB with ID 0 is designated as the leader, and all
SLOBs are localized to the leader using the SLOMO
technique described earlier. LISTEN and SPEAK requests
are sent to the localizing SLOBs with a tuned delay time
to accommodate time synchronization. The localizing
bots will wait for their calculated delay time, then ac-
tually listen and speak. The listener samples from its
left and right microphones as fast as it can, while the
speaker plays a continuous 300Hz tone. The listener
POSTs to the server with an array of integers represent-
ing the left and right sampled microphone amplitudes,
as well as its start time and total time of recording (used
for calculating the audio sampling rate). The speaker
POSTs to the server its start and total playing time.
The server receives these requests, tells the leader SLOB
to move forward 100 centimeters, repeats the previous
process, then tells the leader SLOB to move backwards
100 centimeters.

Once two bots complete the localization procedure, the
server performs multilateration to estimate the loca-
tion of the speaker SLOB relative to the listener SLOB.
We calculate distance just as we saw before; normalize
the audio samples, generate the same 300Hz sent sig-
nal discretized using the sampling rate of the listener
SLOB, and compute the cross-correlation to obtain the
most-likely index and resulting distance. Theory tells us
we should receive a relative-localized coordinate point.
This was not the case, however. We ran out of time
trying to solve this road block, so we leave the solution
to future work.

server 0: (0,0)
1: (12,-10)
2: (30,26)
SLOMO
+
LAN

Figure 3: System architecture.

4. RESULTS

In this section, we detail some key observations and
results from our proof-of-concept system. First, we ob-
serve our SLOBs achieved a maximum audio sampling
rate around 1700-1800 samples per second per micro-
phone. This is nearly identical to the theoretical maxi-
mum sampling rate for our architecture. Unfortunately,
our system does not achieve the same theoretical dis-
tance fidelity. In fact, our distance calculations are
lower-bounded in error by our time synchronization er-
ror. We could not realize our system with low enough
time synchronization to multilaterate a point given a
set of distances and base-stations. We provide figure 4
as example of one actual iteration of SLOMO.

Our general architecture is scalable and promising for
future work. While we could not achieve our end goal
in this paper, we hope to solve this in the future with
better time synchronization.

S. LIMITATIONS

Not including the time synchronization roadblock, we
ran into numerous limitations in this project. We dis-
cuss these limitations, and provide a bridge for future
work, here.

5.1 Hardware

In our approach, we use two micro-controllers communi-
cating over serial transmit and receive lines. We needed
to do this because our Wi-Fi board only supported one
analog pin, yet we had two microphones each requir-
ing an analog pin. Furthermore, our MPU requires
two analog pins for accelerometer and gyroscope data.
Our Arduino board supports four analog pins, so we
placed the four analog pins into the Arduino and fac-
tored our SLOB code to accommodate data transmis-
sions between both boards. While at first this may

appear to be a limitation, this is only true when us-
ing standard Arduino libraries. The serial library re-
stricts baud rates to a maximum of 115200 bits per
second. Yet, using custom low-level code, we could the-
oretically achieve 2 million baud. As discussed before,
our baud rate already gives us tens of centimeters of
distance accuracy, yet we leave higher baud (increased
sampling rate) for future work. In an ideal world, we
would custom-design a single micro-control board that
handles all of our functionality.

We also ran into board-specific issues with the Wi-Fi
board. The Wi-Fi board’s internal OS implements a
watchdog to periodically check its wireless connection.
Because of this, the Wi-Fi board requires interrupts
during code execution. The watchdog implements this
by interrupting code execution during DELAYs. Fur-
thermore, if the watchdog detects a loop that has been
running for too long with no delays, then the board will
restart itself. This potentially limited our audio sam-
pling rate.

Finally, our SLOB architecture was severely limited by
each board’s memory capacity. The Arduino board con-
tains 2KB of memory, which severely limits its internal
buffer for microphone sampling. We solved this by di-
rectly streaming each byte of sampled audio directly
to the Wi-Fi board over serial. This requires synchro-
nization and specialized stream-handling code, which
was challenging to implement. Fortunately, the Wi-Fi
board contains 128KB of memory, which allowed us to
save about 2048 left-right samples (2 - 2048 = 4096 ac-
tual microphone samples, at two bytes each yields 8192
required bytes) — plenty of room for 500 milliseconds of
audio sampling. Unfortunately, we still have to ship this
data to the server. We send these samples via POST
request, meaning we have to build a string in-memory
to represent our data. KEach sample corresponds to
about 3 digits, which yields 3 characters per sample.

(a) Before moving forward 100 centimeters.

left mic, before move

o 0.1 0.2 0.3 0.4 0.5

left mic, after move
1 T T T T

0 0.1 0.2 03 0.4 0.5

(b) After moving forward 100 centimeters.

right mic, before move

4] 0.1 0.2 0.3 0.4 0.5

right mic, after move

05

0 0.1 0.2 03 0.4 0.5

(c) Actual localization microphone samples. In this run, the microphones were sampled for 500 milliseconds at 1734 samples per second. The
red dots indicate the cross-correlation max-likelihood lag at which a 300Hz sine wave for 125 milliseconds appears. The black dots indicate the
server-estimated time at which the speaker started broadcasting the 300Hz signal. The 300Hz estimated position is typically correct, yet the
speaker start time is almost always incorrect. This is our most significant source of error, matching our theoretical insights.

Figure 4: Example execution of localizing one SLOB to another using SLOMO. The left SLOB is the leader/listener,

and the right SLOB is the speaker.

Each character requires one byte of storage. Adding
in comma separators, another byte, our POST data re-
quires 8 times the memory capacity of the actual audio
samples. This cuts our memory budget quite close. In
future work, we might consider a custom board contain-
ing more memory, we might consider compressing our
data before sending, and/or we might create a custom
network transfer protocol to enable SLOB-server data
streaming.

5.2 Approach

Sound is a useful technique for agent communication.
Sound signals do not require line-of-sight, nor require
a wireless connection. Sound signals can pass through
a variety of materials, and is slow enough to theoret-
ically judge precise distances. Despite the appeals of
audio communication, there are a handful of draw-
backs. First, sound may bounce around after hitting
solid objects, which causes multipathing and reduces
the arrival-time accuracy.

Finally, sound-to-distance estimation requires accurate
time synchronization. Our approach is severely limited
in this capacity. As we showed before, even 10 mil-
liseconds of time-synchronization error yields above 3
meters of fidelity. GPS gives similar error, yet only
works outside, which still gives this project technical
merit since our technique works almost anywhere. Re-
gardless, for centimeter-level accuracy, an entirely new
time-synchronization method must be developed. We
leave this to future work.

5.3 Project Completion

While we could not solve our intended research goal,
we demonstrated significant progress and justified the
merits of continuing. We could not complete our target
goal due to time constraints — given another few months
of testing, we certainly could have achieved real local-
ization results.

6. REFERENCES synchronization in an internet of things. CoRR
[1] https://github.com/jugoodma/818bw-project. abs/1806.02474 (2018).
[2] MaNI, S. K., DURAIRAJAN, R., BARFORD, P.,

AND SOMMERS, J. A system for clock

